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Stability of relative equilibria for Hamiltonian systems is generally equated with Liapunov 
stability of the corresponding fixed point of the flow on the reduced phase space. Under 
mild assumptions, a sharp interpretation of this stability is given in terms of concepts on 
the unreduced space. 

Kqvwords: Harniltonian svsterns, nonlinear stabi1it.v 
1991 MSC: 5s F OS, 58 F 10. 93 D 05 

Suppose that (P, w) is a symplectic manifold on which a Lie group G acts 
symplectically, and let H : P + II2 be a G-invariant Hamiltonian function. 
A relative equilibrium is a point of phase space with Hamiltonian evolution 
coincident with a one parameter orbit of the symmetry group G. Relative 
equilibria correspond to fixed points of the flow on the Poisson or symplec- 
tic reduced phase spaces [ 1,3]. Verifying the nonlinear stability of relative 
equilibria is generally equated with establishing the Liapunov stability of the 
corresponding fixed point of the flow on the reduced phase space [3,6,9]. 
A defect of this approach is the absence of a fundamental interpretation of 
nonlinear stability in terms of the dynamics on the unreduced phase spaces. 

The most obvious candidate for a definition of stability in this context is 
orbital stability: the evolution obtained from an initial condition near enough 
to a given relative equilibrium remains in any specified open neighborhood of 
the orbit of that relative equilibrium. In general, however, orbital stability of 
relative equilibria in Hamiltonian systems with symmetry cannot be expected. 
For example, thinking about the motion of a single rigid body rotating on its 
longest or shortest principal axis of inertia, then perturbing this motion in such 
a way that the body only rotates more quickly, one can see that two orbits in 
phase space result that gradually separate from one another. But notice that, 
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after arbitrary time, the endpoints of these two orbits can be brought together 
by multiplying by an element in the group of rotations about that axis, and 
that this group is the isotropy group of the angular momentum vector. 

This article proves this general statement under the conditions that the 
action of the isotropy group of the momentum is a proper action on the phase 
space, the Lie algebra of the group admits a metric invariant under the adjoint 
action of G, and no infinitesimal generator of the action of G vanishes at 
the relative equilibrium. The situation can be described by a single sentence: 
ordinarily, a stable relative equilibrium can drift on1.v along the direction of the 
isotropy subgroup of its momentum. 

We begin with an appropriate definition of stability in the symmetric context. 
We follow the notation of ref. [ 11. 

Definition 1. Let (P, o, H, G, J) be a Hamiltonian system with symmetry and 
let G’ be a subgroup of G. Then a relative equilibrium z, is called G/-stable, 
or stable modulo G’, if for all G/-invariant open neighborhoods V of G’ . z,, 
there is an open neighborhood V s V of z, which is invariant under the 
Hamiltonian evolution. 

Remark 2. If G’ is compact, then any open neighborhood of G’ . ze contains a 
G/-invariant open neighborhood of G’ . z, (use the tube lemma of elementary 
topology [7]), so that in definition 1 the phrase “G/-invariant open neighbor- 
hoods Y” may be replaced with “open neighborhoods I”’ in that case. 

In the process of determining the stability of relative equilibria, the following 
easy lemma is useful. 

Lemma 3. Let A and B be bilinear forms on a finite dimensional vector space. 
Suppose that A is positive semidejkite and that B is positive deJinite on ker A. 
Then there exists an r > 0 such that A + E B is positive definite for all E E (0, r). 

ProoJ: Let the vector space be E, let ] . ] be a norm on E, and write E = 
E’ CB ker A. Then A is positive definite on E’, so there is a constant ci > 0 
such that 

A(XI,XI) 2 c,lx,l*, ‘JXI E E’. 

Also choose M > 0 and c2 > 0 so that 

B(x2~2) L c21x212, Vx2 E ker A, 
IB(x,y)l 5 Wxllvl, VX,Y E E. 
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Then if XI E E’ and x2 E ker A, 

(A + fB)(XI + x2,x1 + x2) 
= A(Xl,Xl) + fB(XI,XI 1 + 2CB(XI,X2) + EB(XZ,X2) 

2 c, Ix, I2 - EMIX, I2 - 2eM]x, [Ix,] + EC2]X2]2 

= (c, - EM)lX*12 - 2EM]X,]]Xz] + EC2]X#. 

Viewed as a quadratic polynomial in 1x11 and 1x21, the discriminant of the last 
expression is 

4e2M’ - 4(C, - Ehf)EC2 = -4E (C,Cz - Ekf(kf + cz)), 

which is negative as long as e < cl c2/M(M + c2). Cl 

Remark 4. The following alternative proof was suggested by Alan Weinstein. 
Use bilinearity to reduce the domains to a unit sphere in E. Then on a 
compact space S, if fi : S -, R is continuous and nonnegative and f2 : S --+ R is 
continuous and positive on f,-' (0), then fi + e f2 is positive for all sufficiently 
small positive e. 

Points of phase space with nontrivial infinitesimal isotropy correspond to 
places where reduction techniques in the theory of Hamiltonian systems with 
symmetry fail [2]. Thus relative equilibria at these points require special 
attention [ 8 1; the other relative equilibria are called regular. We will denote 
the Lie algebra of G by g. 

Definition 5. Let (P, w, H, G, J) be a Hamiltonian system with symmetry. A 
relative equilibrium ze is regular if, for all < E g, 

d 
b(ze) = T.z, = - dt 

exp(t<) . ze # 0. 
1=0 

A relative equilibrium that is not regular is called degenerate. 

The main result, inspired by the energy momentum method [6], gives suffr- 
cient conditions for a regular relative equilibrium to be G,,-stable in the sense 
of definition 1. Here G,,e denotes the isotropy group of pLe E g*, and gpc is the 
Lie algebra of G,,. Also, denote by CoAd the co-adjoint action of G on g*. 
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Theorem 6. Let (P, o, H, G, J) be a Hamiltonian system with symmetry. Sup- 
pose ze is a regular relative equilibrium with evolution t H exp({&) . ze, 
J(G) = pe, the action of G,, on P is proper, and g admits an inner product 
invariant under the adjoint action of G,,. Then d (H - JC,) (z,) = 0, and ze 
is GA,,-stable if it is formally stable; that is, if d2 (H - JCE) (z,) 1 T,, J-l (,uu,) 
is positive or negative dejinite on some (and hence any) complement to g,, . ze 
in T,, J-’ (,u~). 

ProoJ: That d(H - JtC)<z,) = 0 is a trivial computation using XH ( ze ) = 
&(z,). It is also easy to see that the kernel of d2(H - JtC)(z,) 1 Tz,J-’ (pC) 
contains g,, . z,: if q E g,, and v E T,,J-* (Pi), then 

d2W- J&e))(rl(zd,v) = d(i,$W- JrC))(z,)v 
= d( J<c, J,,) 
= dJ[e,,t,l (zeb 
= 0. 

Thus if d * (H - JcC ) ( ze ) is definite on one complement to gPe. ze in Tz, J- ’ ( ,u~ ) 
then it is definite on any such complement. 

Now for the proof that z, is G,,-stable. Obviously, the positive definite 
case may be assumed without loss of generality. The proof is obtained by 
modifying H - Jt=, thereby constructing a G,,-invariant function f in an open 
neighborhood of G,, . ze which has G,, . ze as a manifold of critical points 
and positive definite Hessian in directions complementary to G,,, . ze. The 
Morse lemma is then used on a submanifold tangent to these complementary 
directions, and the proof is completed by establishing control on the time 
evolution of the function f. 

Since the action of G,, on P is proper, it admits a relatively compact slice 
at z,; that is, there is a submanifold S containing z, with compact closure and 
a map x from an open neighborhood U,, of ze in G,, . ze to G,, such that: 
- If gz, = z, then gS = S. 
- If gS II S # 0 then gz, = ze. 
- The map x satisfies the following: x (z,) = Id, x (u) ze = u for all u E UZ, 
and the map U,, x S + P by (u,z) H x (u) . z is a diffeomorphism from 
U,, x S to some open neighborhood of z,. 
Indeed, S may be constructed as follows: the isotropy group ZZ, of ze in G,, . ze 
is compact since the G,, action on P is proper. Thus, there is a Riemannian 
metric on P such that the I*, action is isometric. Then S can be set to the image 
under the metric exponential map of a sufficiently small ball in the orthogonal 
complement of g,, . ze (the second property also requires the assumption that 
the action is proper.) 
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Note that G,, . S is an open neighborhood of GPF . ze. Construct R : G,, . S ---) 
G,, . ze by the requirement 

n(gz) = gz,, Vz E S,g E G,,. 

The map rr is well defined since if gz = g’z’ then (g-‘g’s) n S # 8, 
so g-‘g’z, = z, and hence gz, = g’z,. Also, n is smooth since, by the 
definition of a slice, it is locally just a projection. Now every point in G,, . z, 
is a regular relative equilibrium, so there is a smooth function 9 : G,, + g 
such that XH (u) = p(u) (u); that is, the evolution of u E G,, . z, is t H 
exp( p (u)t) u. It is immediate from this definition that 9 (gz) = Ad, p(z) for 
all g E G,,; thus the map !P ‘%’ p o rc has this property too, since n intertwines 
the action of G,,. To summarize, we have constructed a map !P : G,, . S --f g 
such that 

y&x) = Ad, y(x), ‘i’g E G,,, (1) 
and 

mu = te, Image y = G,, .L pL, 0 y = (Pi,&). (2) 

Consider the function fi = H - Jtp + (,D~, <,) - H (z, ). First, fi is G,,- 
invariant: if g E GP, then 

.ii (gx) - h (xl = (Jkx), Wgx,) - (J(x), Wx)) 

= @Ad, J(x),Ad, W-4) - (J(x), WI) 
= 0. 

Also, dfi (z,) = 0: let c(t) be a curve at z, tangent to II E Tz,P. Then 

df,(z,)v = dH(z,)v - $ (J(cW), Y’(cW)) 
I=0 

= dH(z,)v - (dJ(z,)v, !P(z,)) - ; (Pe, fqm)) 
I=0 

= [dfUze)v -dJ&e)v] - $1 (P&) 
r=o 

= 0. 

Additionally, define the function fi = 1 J - pu,l*, where the norm is obtained 
from the CoAd-invariant inner product induced from the hypothesized Ad- 
invariant inner product on g. Obviously, A shares with fi the properties that 
it is G,,-invariant and has zero derivative at ze. Now let Y be a complement 
to TZ, J-’ (,&) in T& that is, suppose 

Tz,S = (Tz,S n Tie J-’ (pe)) e Y g Z e.j Y. 
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Then Z is a complement to g,,c . ze in 7’,,J-’ (p(,) and one computes that 
.fi and H - Jtc differ be a constant on S, so by hypothesis d’(.fiIS) (z,) is 
positive definite on Z. Moreover, d2(.f21S) (z,) is positive semidefinite and 
has kernel Z. Thus, by lemma 3, there is an a E R such that f = afi + fi has 
d2 (JjS) (z,) positive definite. 

Thus, given a G,,,-invariant neighborhood I/ of G,,, . z,, one can use the 
Morse lemma, and perhaps shrink S, to find an E > 0 such that f 2 0 on S 
and 

f-‘[O,E)ns~ v, (3) 
Clp (f- ’ [O, E ) f-l S) E S. (4) 

Concerning the time evolution off, there is the following estimate: if F, is 
the Hamiltonian flow, if z E S, and if F, (z) E G,, . S, then 

f(F,(z)) -f(z) 
= J+,(z)) - Jv(z) 

= (J(W)), Y((F,W)) - (J(z), Y(d) 
= (J(z) -~u,,Y(fi(d) -Y(z)) + (pe,Y(4W)) - (pL,,YW) 

= (J(z) - pue, Y(f’,W) - Y(z)), 

since the evaluation of ,u on the image of Y is (,LL,&). Thus, 

0 L f&(z)) 5 f(z) + [(J(z) -pe, Y(F,(z)) - Y(z))1 
5 f(z) + [J(z) -14 (IY(F,(z))l + IY(z)l) 

= f(z) + 4tellJ(z) -AI. (5) 

By continuity of S and J, there is some neighborhood S’ C S of ze such that 
If(z)1 5 e/2 and IJ(z) - pu,l 5 ~/41&l on S’. The proof will be complete if 
it is shown that 

F,(S’)~~-‘[O,E]~G,,&~A, (6) 

for then U ‘?? IJ, FI (G,, . S’ ) c A C_ V, by (3 ) and G,, invariance of everything 
in sight, and U is invariant under the Hamiltonian flow. To show (6), suppose 
it is false for some positive t . Then for some z E S’, 

If $2 sup{ t 1 F,(z) E A,VO 5 s < t} < co. 

Obviously, uf gf F,, (z ) @ A; otherwise, since A is open, Ft (z ) would be 
contained in A for a time longer than tf. On the other hand, uf E Clp A, since 
tf is the smallest time of escape from A. Thus, there are sequences zi E S 
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and gi E G,,, such that gizi + u,-. Since S is relatively compact, one may 
assume zi --t z E Clp S, and then since G,,, acts properly, some subsequence 
of gi converges, so one may assume gi + g E G,,. Using (5)) f (z ) < E, and 
then using (4) gives z E S. Thus, uf = gz E A, a contradiction. The proof 
that (6) is true for t negative is similar. Cl 

Remark 7. The conclusion that d (H - JtC) (z,) = 0 and the definition of 
formal stability are, of course, not predicated on the assumption that G,, acts 
properly or on the existence of an Ad-invariant inner product. 

Remark 8. At a regular relative equilibrium, the Marsden-Weinstein reduction 
is well defined, at least locally, and z, passes to an equilibrium there. Formal 
stability is equivalent to the Hessian of the reduced Hamiltonian being positive 
or negative definite at that equilibrium: to see this simply use a small section 
to the G,, action through ze and within J-’ (pe)/Gp, as an open neighborhood 
of the equilibrium in the reduced space. 

Remark 9. The same conclusion follows if the hypotheses are verified with 
the Hamiltonian H replaced by any G,,-invariant conserved quantity with 
the same derivative as H at the relative equilibrium. This is useful when 
dealing with degenerate relative equilibria, since isotropy implies the existence 
of conserved quantities with zero derivative [2] which can be used to augment 
the Liapunov function H - Jc [ 8 1. 

Remark 10. If the Lie group G is compact then the action of G,, on P is 
proper and g admits an Ad-invariant metric by averaging. 

Remark 11. It would be interesting to find conditions sufficient to guarantee 
z, not stable modulo any proper closed subgroup of G,,. 

Remark 12. Suppose z, is a formally stable regular relative equilibrium with 
momentum p(e and that the action of G on P is proper. Suppose further that pL, 
is generic; that is, suppose that the orbits of G,, form a local fibration of some 
neighborhood of pu,. Under these conditions the Poisson reduced phase space 
exists locally near ze and the corresponding Poisson structure has constant 
rank in a neighborhood of the projection of ze. Then ref. [5] implies that 
ze is G-stable. Moreover, if pe is not generic then this conclusion is false in 
general (see the appendix of ref. [ 51. ) 

Example 13. Consider the Hamiltonian system that is two axially symmetric 
rigid bodies coupled by an ideal ball and socket joint moving in three dimen- 
sional space in the absence of external forces [4,8]. This system admits the 
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symmetry group (S’ ) Z x SO (3) as well as an abundance of relative equilibria 
satisfying the conditions of theorem 6 [ 81. Motions near those relative equi- 
libria with nonzero total angular momentum are constrained to rotate about 
the axis along that vector, while motions near relative equilibria with zero 
total angular momentum can be expected to drift in a way not so constrained. 
Similar considerations apply to more general multibody systems. 

Example 14. This example (due to Alan Weinstein) shows that the assumption 
of an Ad-invariant metric is essential in theorem 6. Consider two particles 
moving in three dimensional space with Hamiltonian function 

H gr ;llpxll* + fll~,rll* + $11~ -VII*. 

Take as the Lie group of symmetries the Euclidean group: that is SO(3) x R3 
with the semidirect product structure 

(A,a). (B,b) = (AB,a + Ml) 

and acting on the configuration space R6 by 

(-ha). (X,Y) z (Ax + a,Ay + a). 

By balancing centrifugal force with the linear attraction of the particles, the 
curves 

t H (exp(tj’)k + yt,-exp(tjA)k + yt) 
are evolutions in configuration space, where i, i and k are the usual basis 
vectors of R3 and u” is the usual antisymmetric matrix generated from a E R3. 
One verifies that these evolutions are formally stable regular relative equilibria 
if the vector y is a nonzero multiple of i. Fixing one such relative equilibrium, 
the isotropy group of its momentum is isomorphic to S* x R, and acts on 
configuration space by 

(0, t) . (XI;XZ) = (exp(Bj”)xl + tj,exp(Oj’)x2 + ti). 

Thus, by acting with this subgroup, points in phase space may only be trans- 
lated parallel to j. But nearby evolutions exist that translate along any di- 
rection, so the relative equilibrium is not stable modulo the isotropy group 
of the momentum. On the other hand, theorem 6 is inapplicable, since the 
Lie algebra of the Euclidean group does not admit a metric invariant under 
the adjoint action of the isotropy group of the momentum (some orbits of 
this action are not bounded). By ref. [5], however, the relative equilibrium 
is stable under the action of the full symmetry group SO(3) x R3. Moreover, 
performing first a symplectic reduction by R3 (equivalent to moving to the 
center of mass frame), this system is reduced to a three dimensional linear 
oscillator, whose relative equilibria’s stability can be analyzed using theorem 6. 
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